Skip to main content

Etiqueta: PRJuvenil

Problema 11: Concurso «Retos olimpiadas » Juvenil (4º ESO)

¡¡ Último problema de la temporada !! ¡ Anímate a participar !

A continuación puedes ver el enunciado del problema 11 para el concurso «Retos Olimpiadas», en la categoría Juvenil (4º ESO). Para participar sigue las instrucciones que encontrarás tras el enunciado.


Enunciado problema 11:    

SUMA DE NÚMEROS CONSECUTIVOS

Encuentra el menor número entero positivo que puede expresarse como suma de nueve, de diez y también de once números enteros consecutivos


Instrucciones para participar en el concurso:

  • Descarga e imprime el documento en pdf: PROBLEMA11_JUVENIL_23_04_2025
  • Realiza la resolución del problema escrito a mano en el documento impreso del punto anterior.
  • Escanea en orden ascendente a la numeración de páginas los folios que hayas usado en la resolución del problema. Se guardarán en un único archivo en formato pdf (máx.10MB), nombrado problema-numero-categoría-nombre completo del participante (Ejemplo: problema2AlevinJavierSierraRosa).
  • Rellena el formulario para enviar el problema. ( Se solicitan datos del alumnado pero también del representante del menor, que puede ser docente, padre, madre o tutor/a legal).
  • Tienes de plazo, si quieres concursar, del 23/04/2025 al 30/04/2025. En el caso que, pasado ese período quieras enviar una resolución, puedes hacerlo, pero ya no entraría en el concurso.

RECUERDA que cuando resuelves un problema tienes que tener en cuenta los datos, anótalos si es relevante la información, realiza las operaciones en orden y explicando las que consideres importantes, y, cómo no, escribe la solución al problema planteado, contestando a la pregunta, generalmente.

Para una información más detallada, echa un vistazo a las bases: Bases del concurso «Retos Olimpiadas»

Si te surgen dudas, contacta con nosotros, te atenderemos gustosamente en Contacta con nosotros.

Problema 10: Concurso «Retos olimpiadas » Juvenil (4º ESO)

Soluciones:

Hemos recibidos 0 resolución del problema 10 en la categoría juvenil, os animamos a participar en el siguiente reto, ¡ ya solo tendrás la oportunidad con el problema 11! .

A continuación os facilitamos la solución oficial del problema 10:


2-abril-2025

Enunciado:

A continuación puedes ver el enunciado del problema 10 para el concurso «Retos Olimpiadas», en la categoría Juvenil (4º ESO).

¡¡ Anímate a participar !! Para ello sigue las instrucciones que encontrarás tras el enunciado.


Enunciado problema 10:    

CUADRADO PERFECTO

Calcula el valor de n para que el número 28 + 211 + 2n sea un cuadrado perfecto


Instrucciones para participar en el concurso:

  • Descarga e imprime el documento en pdf: PROBLEMA10_JUVENIL_2_04_2025
  • Realiza la resolución del problema escrito a mano en el documento impreso del punto anterior.
  • Escanea en orden ascendente a la numeración de páginas los folios que hayas usado en la resolución del problema. Se guardarán en un único archivo en formato pdf (máx.10MB), nombrado problema-numero-categoría-nombre completo del participante (Ejemplo: problema2AlevinJavierSierraRosa).
  • Rellena el formulario para enviar el problema. ( Se solicitan datos del alumnado pero también del representante del menor, que puede ser docente, padre, madre o tutor/a legal).
  • Tienes de plazo, si quieres concursar, del 2/04/2025 al 9/04/2025. En el caso que, pasado ese período quieras enviar una resolución, puedes hacerlo, pero ya no entraría en el concurso.

RECUERDA que cuando resuelves un problema tienes que tener en cuenta los datos, anótalos si es relevante la información, realiza las operaciones en orden y explicando las que consideres importantes, y, cómo no, escribe la solución al problema planteado, contestando a la pregunta, generalmente.

Para una información más detallada, echa un vistazo a las bases: Bases del concurso «Retos Olimpiadas»

Si te surgen dudas, contacta con nosotros, te atenderemos gustosamente en Contacta con nosotros.

Problema 9: Concurso «Retos olimpiadas » Juvenil (4º ESO)

Soluciones:

Hemos recibidos 0 resolución del problema 9 en la categoría juvenil, os animamos a participar en los siguientes retos, ¡ ya solo tendrás la oportunidad con el problema 10 y problema 11! .

A continuación os facilitamos la solución oficial del problema 9:

CIRCUNFERENCIAS TANGENTES

Las tres circunferencias son tangentes dos a dos, el radio de la circunferencia mediana es 1 y el de la grande 2, calcula el radio de la pequeña

Solución

Si llamamos r al radio de la circunferencia pequeña, se forma un trapecio rectángulo de la siguiente forma:


26/03/2025

A continuación puedes ver el enunciado del problema 9 para el concurso «Retos Olimpiadas», en la categoría Juvenil (4º ESO).

¡¡ Anímate a participar !! Para ello sigue las instrucciones que encontrarás tras el enunciado.


Enunciado problema 9:    

CIRCUNFERENCIAS TANGENTES

Las tres circunferencias son tangentes dos a dos, el radio de la circunferencia mediana es 1 y el de la grande 2, calcula el radio de la pequeña


Instrucciones para participar en el concurso:

  • Descarga e imprime el documento en pdf: PROBLEMA9_JUVENIL_26_03_2025
  • Realiza la resolución del problema escrito a mano en el documento impreso del punto anterior.
  • Escanea en orden ascendente a la numeración de páginas los folios que hayas usado en la resolución del problema. Se guardarán en un único archivo en formato pdf (máx.10MB), nombrado problema-numero-categoría-nombre completo del participante (Ejemplo: problema2AlevinJavierSierraRosa).
  • Rellena el formulario para enviar el problema. ( Se solicitan datos del alumnado pero también del representante del menor, que puede ser docente, padre, madre o tutor/a legal).
  • Tienes de plazo, si quieres concursar, del 26/03/2025 al 2/04/2025. En el caso que, pasado ese período quieras enviar una resolución, puedes hacerlo, pero ya no entraría en el concurso.

RECUERDA que cuando resuelves un problema tienes que tener en cuenta los datos, anótalos si es relevante la información, realiza las operaciones en orden y explicando las que consideres importantes, y, cómo no, escribe la solución al problema planteado, contestando a la pregunta, generalmente.

Para una información más detallada, echa un vistazo a las bases: Bases del concurso «Retos Olimpiadas»

Si te surgen dudas, contacta con nosotros, te atenderemos gustosamente en Contacta con nosotros.

Problema 8: Concurso «Retos olimpiadas » Juvenil (4º ESO)

Soluciones:

Hemos recibidos 1 resolución del problema 8 en la categoría juvenil, gracias por participar.

A continuación os facilitamos la solución oficial del problema 8:

DEMOSTRACIÓN GEOMÉTRICA

Demostrar que si a y b son los dos segmentos en que la circunferencia inscrita divide a la hipotenusa de un triángulo rectángulo, el área del triángulo es  a . b

Solución


La resolución recibida no ha sido correcta, con lo que esta semana no hay resolución ganadora.


19-marzo-2025

A continuación puedes ver el enunciado del problema 8 para el concurso «Retos Olimpiadas», en la categoría Juvenil (4º ESO).

¡¡ Anímate a participar !! Para ello sigue las instrucciones que encontrarás tras el enunciado.


Enunciado problema 8:    

DEMOSTRACIÓN GEOMÉTRICA

Demostrar que si a y b son los dos segmentos en que la circunferencia inscrita divide a la hipotenusa de un triángulo rectángulo, el área del triángulo es a · b


Instrucciones para participar en el concurso:

  • Descarga e imprime el documento en pdf: PROBLEMA8_JUVENIL_19_03_2025
  • Realiza la resolución del problema escrito a mano en el documento impreso del punto anterior.
  • Escanea en orden ascendente a la numeración de páginas los folios que hayas usado en la resolución del problema. Se guardarán en un único archivo en formato pdf (máx.10MB), nombrado problema-numero-categoría-nombre completo del participante (Ejemplo: problema2AlevinJavierSierraRosa).
  • Rellena el formulario para enviar el problema. ( Se solicitan datos del alumnado pero también del representante del menor, que puede ser docente, padre, madre o tutor/a legal).
  • Tienes de plazo, si quieres concursar, del 19/03/2025 al 26/03/2025. En el caso que, pasado ese período quieras enviar una resolución, puedes hacerlo, pero ya no entraría en el concurso.

RECUERDA que cuando resuelves un problema tienes que tener en cuenta los datos, anótalos si es relevante la información, realiza las operaciones en orden y explicando las que consideres importantes, y, cómo no, escribe la solución al problema planteado, contestando a la pregunta, generalmente.

Para una información más detallada, echa un vistazo a las bases: Bases del concurso «Retos Olimpiadas»

Si te surgen dudas, contacta con nosotros, te atenderemos gustosamente en Contacta con nosotros.

Problema 7: Concurso «Retos olimpiadas » Juvenil (4º ESO)

Soluciones:

Hemos recibidos 6 resoluciones del problema 7 en la categoría juvenil, gracias por participar.

A continuación os facilitamos la solución oficial del problema 7:

FRACCIONES ALGEBRAICAS

Solución:


Las resoluciones recibidas han sido acertadas, se ha elegido aquella que estaba correcta y que mejor ha justificado los pasos que ha seguido para resolver el problema 7

La resolución elegida como ganadora del problema 7 ha sido la realizada por Claudia Valle Arias del IES de Llerena (Llerena). ¡¡ Enhorabuena !!


Enunciado:

5-marzo-2025

A continuación puedes ver el enunciado del problema 7 para el concurso «Retos Olimpiadas», en la categoría Juvenil (4º ESO).

¡¡ Anímate a participar !! Para ello sigue las instrucciones que encontrarás tras el enunciado.


Enunciado problema 7:    

FRACCIONES ALGEBRAICAS


Instrucciones para participar en el concurso:

  • Descarga e imprime el documento en pdf: PROBLEMA7_JUVENIL_12_03_2025
  • Realiza la resolución del problema escrito a mano en el documento impreso del punto anterior.
  • Escanea en orden ascendente a la numeración de páginas los folios que hayas usado en la resolución del problema. Se guardarán en un único archivo en formato pdf (máx.10MB), nombrado problema-numero-categoria-nombre completo del participante (Ejemplo: problema2AlevinJavierSierraRosa).
  • Rellena el formulario para enviar el problema. ( Se solicitan datos del alumnado pero también del representante del menor, que puede ser docente, padre, madre o tutor/a legal).
  • Tienes de plazo, si quieres concursar, del 12/03/2025 al 19/03/2025. En el caso que, pasado ese período quieras enviar una resolución, puedes hacerlo, pero ya no entraría en el concurso.

RECUERDA que cuando resuelves un problema tienes que tener en cuenta los datos, anótalos si es relevante la información, realiza las operaciones en orden y explicando las que consideres importantes, y, cómo no, escribe la solución al problema planteado, contestando a la pregunta, generalmente.

Para una información más detallada, echa un vistazo a las bases: Bases del concurso «Retos Olimpiadas»

Si te surgen dudas, contacta con nosotros, te atenderemos gustosamente en Contacta con nosotros.